Higher level Deligne-Lusztig theory: algebraisation, dimension, and sign

Zhe Chen

Department of Mathematics Shantou University

CMS 2024, Jiaxing

$$\mathbb{F}_q$$
 - a finite field with $\operatorname{char}(\mathbb{F}_q) = p$

G - a connected reductive group over \mathbb{F}_q e.g. $\mathrm{GL}_n, \mathrm{PGL}_n, \mathrm{Sp}_{2n}, \mathrm{SO}_n$ etc.

 $F \colon G \to G$ the geometric Frobenius endomorphism

L - Lang isogeny $g \mapsto g^{-1}F(g)$

$$\mathbb{F}_q$$
 - a finite field with $\operatorname{char}(\mathbb{F}_q) = p$

G - a connected reductive group over \mathbb{F}_q e.g. $\mathrm{GL}_n, \mathrm{PGL}_n, \mathrm{Sp}_{2n}, \mathrm{SO}_n$ etc.

 $F \colon G \to G$ the geometric Frobenius endomorphism

L - Lang isogeny $g\mapsto g^{-1}F(g)$

 $B = T \ltimes U$ - Levi decomposition of a Borel subgroup

Assumption: FT = Tnot necessarily FU = U or FB = B

$$G^F = G(\mathbb{F}_q) \curvearrowright L^{-1}(FU) \curvearrowright T^F$$
 translation action

$$\Longrightarrow G^F \curvearrowright H^i_c(L^{-1}(FU), \overline{\mathbb{Q}}_\ell) \curvearrowright T^F$$

 $H^i_c(-, \overline{\mathbb{Q}}_\ell)$ denotes the compactly supported i -th ℓ -adic cohomology group, $\ell \neq p$ a prime

$$G^F = G(\mathbb{F}_q) \curvearrowright L^{-1}(FU) \curvearrowright T^F$$
 translation action

$$\Longrightarrow G^F \curvearrowright H^i_c(L^{-1}(FU), \overline{\mathbb{Q}}_\ell) \curvearrowright T^F$$

 $H^i_c(-, \overline{\mathbb{Q}}_\ell)$ denotes the compactly supported *i*-th ℓ -adic cohomology group, $\ell \neq p$ a prime

Definition

 $R_{T,U}^{\theta} := \sum_{i} (-1)^{i} H_{c}^{i}(L^{-1}(FU), \overline{\mathbb{Q}}_{\ell})_{\theta}$, where $\theta \in \operatorname{Irr}(T^{F})$, is called a Deligne–Lusztig (virtual) representation of G^{F} .

Theorem (Deligne-Lusztig, 1976)

- (1) If θ is in general position, then $\pm R_{T,U}^{\theta}$ is irreducible;
- (2) $R_{T,U}^{\theta}$ is independent of the choice of U (hence of B);
- (3) every irreducible representation of G^F is a subrepresentation of some $\pm R_{T,U}^{\theta}$;
- (4) $\operatorname{Tr}(s, R_{T,U}^{\theta}) = \sum_{w \in W(T)^F} \theta(s^w)$ for r.s.s. $s \in G^F$;
- (5) $\operatorname{Tr}(1, R_{T,U}^{\theta}) = \dim R_{T,U}^{\theta} = (-1)^{\epsilon_G + \epsilon_T} \cdot \frac{|G^F|_{p'}}{|T^F|}.$

 ϵ_H denotes the \mathbb{F}_q -rank of an algebraic group H

An example

Example

$$G := \mathrm{SL}_2$$
, so $G^F = \mathrm{SL}_2(\mathbb{F}_q)$.

Let T be such that $T^F\cong C_{q+1}$. Then $L^{-1}(FU)\cong X$, where

$$X : \det \begin{bmatrix} x & x^q \\ y & y^q \end{bmatrix} = 1$$
. (an affine plane curve)

An example

Example

$$G := \mathrm{SL}_2$$
, so $G^F = \mathrm{SL}_2(\mathbb{F}_q)$.

Let T be such that $T^F\cong C_{q+1}$. Then $L^{-1}(FU)\cong X$, where

$$X : \det \begin{bmatrix} x & x^q \\ y & y^q \end{bmatrix} = 1$$
. (an affine plane curve)

Theorem (Drinfeld, 1974)

Every cuspidal irrep of $\mathrm{SL}_2(\mathbb{F}_q)$ appears in $H^1_c(X,\overline{\mathbb{Q}}_\ell)$.

(With multiplicities ≤ 2 .)

Groups over a local ring

Our settings:

K - a non-archimedean local field, with residue field \mathbb{F}_q e.g. \mathbb{Q}_p or $\mathbb{F}_p((\pi))$

 \mathcal{O}, π - its ring of integers, with uniformiser π

 $\mathbb G$ - a connected reductive group over $\mathcal O$

Groups over a local ring

Our settings:

K - a non-archimedean local field, with residue field \mathbb{F}_q e.g. \mathbb{Q}_p or $\mathbb{F}_p((\pi))$

 \mathcal{O}, π - its ring of integers, with uniformiser π

 $\mathbb G$ - a connected reductive group over $\mathcal O$

Our focus:

SmoothRep(
$$\mathbb{G}(\mathcal{O})$$
) \longleftrightarrow $\bigcup_{r \in \mathbb{Z}_{>0}} \operatorname{Rep}(\mathbb{G}(\mathcal{O}/\pi^r))$

If r=1, we are back to reductive groups over \mathbb{F}_q .

$$\mathbf{G} := \mathbb{G} \times_{\mathcal{O}/\pi^r} \mathcal{O}^{\mathrm{ur}}/\pi^r$$

 $\mathcal{O}^{\mathrm{ur}}$ is ring of integers in the maximal unramified extension of K .

$$\mathbf{G} := \mathbb{G} \times_{\mathcal{O}/\pi^r} \mathcal{O}^{\mathrm{ur}}/\pi^r$$

 $\mathcal{O}^{\mathrm{ur}}$ is ring of integers in the maximal unramified extension of K.

 \exists an \mathbb{F}_q -algebraic group G_r , with Frobenius F, s.t.

$$G_r(\overline{\mathbb{F}}_q) \cong \mathbf{G}(\mathcal{O}^{\mathrm{ur}}/\pi^r) \quad \text{and} \quad G_r^F \cong \mathbb{G}(\mathcal{O}/\pi^r).$$

(The so-called Greenberg functor.)

 $\mathbf{G} := \mathbb{G} \times_{\mathcal{O}/\pi^r} \mathcal{O}^{\mathrm{ur}}/\pi^r$

 $\mathcal{O}^{\mathrm{ur}}$ is ring of integers in the maximal unramified extension of K.

 \exists an \mathbb{F}_q -algebraic group G_r , with Frobenius F, s.t.

$$G_r(\overline{\mathbb{F}}_q) \cong \mathbf{G}(\mathcal{O}^{\mathrm{ur}}/\pi^r) \quad \text{and} \quad G_r^F \cong \mathbb{G}(\mathcal{O}/\pi^r).$$

(The so-called Greenberg functor.)

For $\mathbf{B} = \mathbf{T}\mathbf{U}$ a Levi decomposition in \mathbf{G} , there are also the corresponding algebraic groups B_r, T_r, U_r .

We only concern the case $FT_r = T_r$.

Similar to the r = 1 case:

Definition (Lusztig, 1979 Corvallis volume)

 $R_{T_r,U_r}^{\theta}:=\sum_i (-1)^i H_c^i(L^{-1}(FU_r),\overline{\mathbb{Q}}_\ell)_{\theta}$, where $\theta\in \mathrm{Irr}(T_r^F)$, is called a higher level Deligne–Lusztig representation of G_r^F .

Recall the r = 1 case:

- (1) If θ is in general position, then $\pm R_{T,U}^{\theta}$ is irreducible;
- (2) $R_{T,U}^{\theta}$ is independent of the choice of U (hence of B);
- (3) every irreducible representation of G^F is a subrepresentation of some $\pm R_{T,U}^{\theta}$;
- (4) $\operatorname{Tr}(s, R_{T,U}^{\theta}) = \sum_{w \in W(T)^F} \theta(s^w)$ for r.s.s. $s \in G^F$;
- (5) $\operatorname{Tr}(1, R_{T,U}^{\theta}) = \dim R_{T,U}^{\theta} = (-1)^{\epsilon_G + \epsilon_T} \cdot \frac{|G^F|_{\rho'}}{|T^F|}.$

Question

The r > 1 case?

An overview of the case r > 1:

- (1)+(2) extends generically: Lusztig(2004), Stasinski(2009).
- (3) fails, need to generalise higher DL: Stasinski(2011), C.(2020). This is the story of my CMS 2019 talk.
- (4) extends: C.(2018).
- (5) extends generically: C.-Stasinski(2017,2023).

An overview of the case r > 1:

- (1)+(2) extends generically: Lusztig(2004), Stasinski(2009).
- (3) fails, need to generalise higher DL: Stasinski(2011), C.(2020). This is the story of my CMS 2019 talk.
- (4) extends: C.(2018).
- (5) extends generically: C.-Stasinski(2017,2023).
- (4 & 5 ++): An explicit formula for $\operatorname{Tr}\left(g,R_{T_r,U_r}^{\theta}\right)$ for $\forall g\in G_r^F$: C.–Stasinski(2017,2023). (not available for r=1)

For simplifying the exposition, we assume:

$$\mathbb{G} = \mathrm{GL}_n$$
 and $\mathcal{O} = \mathbb{F}_q[[\pi]].$

All the results, after suitable modifications, work for general $\mathbb{G}(\mathcal{O})$.

From now on let r > 1.

1. Consider the non-degenerate G_r -equivariant bilinear form

$$\operatorname{Tr} \colon \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathbb{A}^1.$$

Here $\mathfrak g$ denotes the Lie algebra of $\mathbb G$ over $\overline{\mathbb F}_q$.

1. Consider the non-degenerate G_r -equivariant bilinear form

$$\operatorname{Tr} : \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathbb{A}^1.$$

Here $\mathfrak g$ denotes the Lie algebra of $\mathbb G$ over $\overline{\mathbb F}_q$.

2. Fix an (arbitrary) non-trivial character $\mu \colon \mathbb{F}_q \to \mathbb{Q}_\ell^{\times}$.

$$\rho \in \operatorname{Irr}(G_r^F)$$

$$\rho \in \operatorname{Irr}(G_r^F) \rightsquigarrow \operatorname{Res}_{\mathfrak{g}^F}^{G_r^F} \rho$$
 since $\mathfrak{g}^F \cong \operatorname{Ker}(G_r^F \twoheadrightarrow G_{r-1}^F)$ as abelian groups

$$\rho \in \operatorname{Irr}(G_r^F) \leadsto \operatorname{Res}_{\mathfrak{g}^F}^{G_r^F} \rho$$
since $\mathfrak{g}^F \cong \operatorname{Ker}(G_r^F \twoheadrightarrow G_{r-1}^F)$ as abelian groups

 \Longrightarrow (Clifford theory) $\Longrightarrow \exists o'(\rho)$ a G_1^F -orbit in $\operatorname{Irr}(\mathfrak{g}^F)$ s.t.

$$\operatorname{Res}_{\mathfrak{g}^F}^{G_r^F}
ho \cong e \cdot \sum_{\sigma \in o'(
ho)} \sigma,$$

where $e \in \mathbb{Z}_{>0}$.

$$\begin{split} \rho \in \mathrm{Irr}(G_r^F) &\leadsto \mathrm{Res}_{\mathfrak{g}^F}^{G_r^F} \rho \\ \mathrm{since} \ \mathfrak{g}^F &\cong \mathrm{Ker}(G_r^F \twoheadrightarrow G_{r-1}^F) \ \mathrm{as} \ \mathrm{abelian} \ \mathrm{groups} \end{split}$$

$$\Longrightarrow$$
 (Clifford theory) $\Longrightarrow \exists o'(\rho)$ a G_1^F -orbit in $\operatorname{Irr}(\mathfrak{g}^F)$ s.t.

$$\operatorname{Res}_{\mathfrak{g}^F}^{G_r^F} \rho \cong \mathbf{e} \cdot \sum_{\sigma \in \sigma'(\rho)} \sigma,$$

where $e \in \mathbb{Z}_{>0}$.

$$\implies$$
 $o' \colon \operatorname{Irr}(G_r^F) \longrightarrow G_1^F \backslash \operatorname{Irr}(\mathfrak{g}^F)$

$$\rho \in \operatorname{Irr}(G_r^F) \leadsto \operatorname{Res}_{\mathfrak{g}^F}^{G_r^F} \rho$$
since $\mathfrak{g}^F \cong \operatorname{Ker}(G_r^F \twoheadrightarrow G_{r-1}^F)$ as abelian groups

$$\Longrightarrow$$
 (Clifford theory) $\Longrightarrow \exists o'(\rho)$ a G_1^F -orbit in $\operatorname{Irr}(\mathfrak{g}^F)$ s.t.

$$\operatorname{Res}_{\mathfrak{g}^F}^{G_r^F} \rho \cong e \cdot \sum_{\sigma \in \sigma'(\rho)} \sigma,$$

where $e \in \mathbb{Z}_{>0}$.

$$\implies$$
 $o' \colon \operatorname{Irr}(G_r^F) \longrightarrow G_1^F \backslash \operatorname{Irr}(\mathfrak{g}^F)$

$$\Longrightarrow$$
 $o: \operatorname{Irr}(G_r^F) \longrightarrow G_1^F \backslash \mathfrak{g}^F.$

via
$$\operatorname{Tr}(-,-)$$
 and μ

Definition

 $\rho \in \operatorname{Irr}(G_r^F)$ is called regular (resp. semisimple, nilpotent) if $o(\rho)$ is regular (resp. semisimple, nilpotent).

Definition

 $\rho \in \operatorname{Irr}(G_r^F)$ is called regular (resp. semisimple, nilpotent) if $o(\rho)$ is regular (resp. semisimple, nilpotent).

Restricting the above discussion from G_r to T_r , one gets

$$o \colon \mathrm{Irr}(T_r^F) \longrightarrow \mathrm{Lie}(T_1)^F.$$

Definition

 $\rho \in \operatorname{Irr}(G_r^F)$ is called regular (resp. semisimple, nilpotent) if $o(\rho)$ is regular (resp. semisimple, nilpotent).

Restricting the above discussion from G_r to T_r , one gets

$$o: \operatorname{Irr}(T_r^F) \longrightarrow \operatorname{Lie}(T_1)^F.$$

Call $\theta \in \operatorname{Irr}(T_r^F)$ regular, if $o(\theta) \in \operatorname{Lie}(T_1)^F$ is regular.

Definition

 $\rho \in \operatorname{Irr}(G_r^F)$ is called regular (resp. semisimple, nilpotent) if $o(\rho)$ is regular (resp. semisimple, nilpotent).

Restricting the above discussion from G_r to T_r , one gets

$$o: \operatorname{Irr}(T_r^F) \longrightarrow \operatorname{Lie}(T_1)^F.$$

Call $\theta \in \operatorname{Irr}(T_r^F)$ regular, if $o(\theta) \in \operatorname{Lie}(T_1)^F$ is regular.

Lemma

If
$$q \to +\infty$$
, then $\frac{\#\{regular\ \theta \in \operatorname{Irr}(\mathcal{T}_r^F)\}}{\#\operatorname{Irr}(\mathcal{T}_r^F)} \to 1$.

The algebraisation theorem

Let
$$I := \left[\frac{r+1}{2}\right]$$
 and $I' := \left[\frac{r-1}{2}\right]$.
So $I + I' = r$, and if r is even then $I = I'$.

Theorem (C.–Stasinski(2017 for even r, 2023 for odd r))

Suppose that θ is regular. Then

$$R^{\theta}_{T_r,U_r} \cong ((-1)^{\varepsilon_{G_1}+\varepsilon_{T_1}})^r \cdot \operatorname{Ind}_{(T_rG_r'')^F}^{G_r^F} \hat{\rho}_{\theta},$$

where $\hat{\rho}_{\theta} \in \operatorname{Irr}((T_r G_r^{l'})^F)$ is uniquely characterised by:

(a) If $s \in (T_r^1 G_r^{l'})^F$, then

$$\operatorname{Tr}(s,\hat{\rho}_{\theta}) = \left(\frac{1}{q^{n(n-1)/2}}\right)^{l-l'} \cdot \operatorname{Tr}\left(s,\operatorname{Ind}_{(\mathcal{T}_{r}^{1}G_{r}^{l'})^{F}}^{(\mathcal{T}_{r}^{1}G_{r}^{l'})^{F}}\widetilde{\theta}|_{(\mathcal{T}_{r}^{1}G_{r}^{l})^{F}}\right);$$

(b) if $s \in T_1^F$, then

$$\operatorname{Tr}(s,\hat{\rho}_{\theta}) = \operatorname{St}_{G_1}(s)^{l-l'} \cdot \theta(s).$$

In the above $(-)_r^d := \operatorname{Ker}((-)_r \to (-)_d)$

The algebraisation theorem

Remark

If \mathbb{G} is general, not necessarily GL_n :

- replace "regular" by "strongly generic",
- replace " $q^{n(n-1)/2}$ " by " $q^{\#\Phi^+}$ ",
- add " $q \ge 7$ ".

Remark

This solves a problem raised by Lusztig in 2004 (when $q \geq 7$). Actually, the representation in the RHS was originally constructed by Gérardin; in the proof we found a more conceptual construction.

Higher level Deligne–Lusztig theory: algebraisation, dimension, and sign $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\bullet\bullet$

Dimension and sign

What if removing the conditions on θ ?

Dimension and sign

What if removing the conditions on θ ? Not much is known! But:

Dimension and sign

What if removing the conditions on θ ? Not much is known! But:

Conjecture (C. 2024)

For general \mathbb{G} , \mathbf{T} , θ , and r:

$$\operatorname{sgn}(R_{T_r,U_r}^{\theta}) = (-1)^{\left(\epsilon_{G_1} + \epsilon_{T_1}\right) \cdot \left(1 + \frac{\log_q |\dim R_{T_r,U_r}^{\theta}|_p}{\#\Phi^+}\right)}$$

where $(-)_p$ denotes the *p*-part of a positive integer.

Dimension and sign

What if removing the conditions on θ ? Not much is known! But:

Conjecture (C. 2024)

For general \mathbb{G} , \mathbf{T} , θ , and r:

$$\operatorname{sgn}(R_{T_r,U_r}^{\theta}) = (-1)^{\left(\epsilon_{G_1} + \epsilon_{T_1}\right) \cdot \left(1 + \frac{\log_q |\operatorname{dim} R_{T_r,U_r}^{\theta}|_p}{\#\Phi^+}\right)},$$

where $(-)_p$ denotes the *p*-part of a positive integer.

This holds in the following cases:

- $FU_r = U_r$;
- *r* = 1 (Deligne–Lusztig,1976);
- $\mathbb{G} = \mathrm{GL}_n$, and θ is regular (C.–Stasinski,2017,2023);
- $q \ge 7$, and θ is strongly generic (C.–Stasinski,2017,2023);
- **T** is elliptic and $\theta = 1$ (C.,2024, and Charlotte Chan 2024);
- $\mathbb{G} = GL_2 \text{ or } SL_2 \text{ (C.,2024)}.$

End

Thank you!